
A New Reformulation-Linearization Technique 
for Bilinear Programming Problems* 

t t A N I F  D. S H E R A L I  and A M I N E  A L A M E D D I N E  
Department of  Industrial and Systems Engineering, Virginia Polytechnic Institute and State 
University, Blacksburg, VA 24061-0118, U.S.A. 

(Received: 14 December 1990; accepted: 7 November 1991) 

Abstract. This paper is concerned with the development of an algorithm for general bilinear 
programming problems. Such problems find numerous applications in economics and game theory, 
location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and 
various risk management problems. The proposed approach develops a new Reformulation-Lineariza- 
tion Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and- 
bound algorithm. The method first reformulates the problem by constructing a set of nonnegative 
variable factors using the problem constraints, and suitably multiplies combinations of these factors 
with the original problem constraints to generate additional valid nonlinear constraints. The resulting 
nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear 
term. This "RLT" process yields a linear programming problem whose optimal value provides a tight 
lower bound on the optimal value to the bilinear programming problem. Various implementation 
schemes and constraint generation procedures are investigated for the purpose of further tightening 
the resulting linearization. The lower bound thus produced theoretically dominates, and practically is 
far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some 
special cases, this process is shown to yield an exact linear programming representation. For the 
associated branch-and-bound algorithm, various admissible branching schemes are discussed, including 
one in which branching is performed by partitioning the intervals for only one set of variables x or y, 
whichever are fewer in number. Computational experience is provided to demonstrate the viability of 
the algorithm. For a large number of test problems from the literature, the initial bounding linear 
program itself solves the underlying bilinear programming problem. 

Key words. Bilinear programming, nonconvex programming, global optimization, branch-and-bound, 
reformulation-linearization technique. 

1. Introduction 

This paper is concerned with the solution of bilinear programming problems of 
the form 

BLP Minimize ~(x, y) ~ c'x + dy + xtGy (1.1) 

subject to ( x , y ) E Z ~ { ( x , y ) :  A ,x+Dly<-bl}  (1.2a) 
A2x + D2y = b 2 (1.2b) 

(x, y ) E  f~----= {(x, y ) :0~  < /<~x<~u<oo, O~L<~y<~ U<oc} , (1.3) 

*This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), 
December 9-14, 1990. 

Journal of Global Optimization 2:379 410, 1992. 
© 1992 Kluwer Academic Publishers. Printed in the Netherlands. 



380 H. D. SHERALI AND A. ALAMEDDINE 

where x C R", y ~ R m, Z is a polyhedron in R n+'' with designated inequality and 
equality constraints, and Ft is a hyper-rectangle in R n+m. We assume the nontrivial 
case that Z N ~ ~ qS. Problems of this type find numerous applications in en- 
gineering, economics, and industrial environments including instances of non- 
linear multi-commodity network flows, location-allocation problems with rec- 
tilinear distance metrics, finding Nash equilibrium points of a bimatrix game, 
dynamic Markovian assignment, multiple modular design problems, 3D assign- 
ment, dynamic production, risk management problems, and the track initializa- 
tion problem. (See [1] for a list of references dealing with these applications.) 
Bilinear programming problems also arise in the solution of quadratic concave 
minimization problems [17], and linear complementarity problems [4]. Indeed, 
any linearly constrained quadratic programming problem with a general objective 
quadratic term ztHz in some variable z can be put in form (1) by writing 
z tHz ~- z y, and accommodating y = Hz in the constraint set. 

Among the known properties of the bilinear programming problem, is the fact 
that if x is fixed, then the problem becomes linear in y and vice versa. Also, the 
bilinear function x'Gy in the objective is nonconvex, and does not even enjoy any 
generalized convexity property such as quasi-convexity or quasi-concavity. Hence, 
bilinear programming problems admit the possibility of existence of several 
suboptimal local optima, which make even the simplest cases hard to solve. 

In the form (1.1)-(1.3), the bilinear programming problem is said to be jointly 
constrained [2], and due to the bilinearity property, attains an optimum at a 
boundary point of Z N ~ .  However, several applications such as quadratic 
concave minimization, linear complementarity, location-allocation problems, 
bimatrix game theory problems, 3D-assignment problems, and the track initializa- 
tion problem among others, admit cases in which the x and y variables are 
disjointly constrained. Such separably constrained bilinear programs [BLP(SC)] 
realize extreme point optimal solutions, if an optimum exists, despite the lack of 
quasi-concavity of the objective function. 

Based on the extreme point optimality characterization and using suitable 
cutting planes, several algorithms have been developed for separably constrained 
bilinear programs. Pioneering work in this area was conducted by Konno 
[14, 15, 16, 17] who developed a cutting plane algorithm based on an enhance- 
ment of Tuy's [27] and Ritter's [20] methods. Using the theory of generalized 
polars, Vaish and Shetty [28] developed deeper cutting planes than those of 
Konno's class of cuts, and imbedded these in an infinitely convergent algorithm. 
These cutting planes were further improved by Sherali and Shetty [24] through 
the use of negative edge extensions of the simplicial cone incident at a given 
vertex, whenever the positive extension is contained within the polar set. By 
coordinating these polar cuts with suitable disjunctive face cuts, Sherali and 
Shetty developed an effective finitely convergent algorithm for BLP(SC). 

Besides cutting plane methods, other algorithmic strategies have also been 
proposed for solving separably constrained bilinear programs. Vaish and Shetty 



A NEW REFORMULATION-LINEARIZATION TECHNIQUE 381 

[28] developed a polyhedral annexation scheme in which a sequence of polytopes 
is inductively generated, for which the corresponding sequence of known optimal 
solutions converges finitely to a global optimum for BLP(SC). Another polyhedr- 
al annexation scheme has been proposed by Thieu [26], and is based on 
converting BLP(SC) to an equivalent concave minimization problem via a 
projection onto the space of x or y variables. Czochralska [8] employs standard 
linear programming techniques in conjunction with a method for ranking extreme 
points of polytopes in order to develop an alternative for this problem. Recently, 
Yajima and Konno [30] have suggested a novel parametric scheme for solving a 
special case of BLP(SC) in which the matrix G in (1.1) is of rank two or three. By 
exploiting this special structure, they are able to solve problems of size far larger 
than solvable using any available general purpose algorithm for BLP(SC). 

A notable exception in the bilinear programming literature is the procedure by 
AI-Khayyal and Falk [2] (also see [5, 6]) that can be used to solve jointly 
constrained bilinear programs. Assuming that G = I in (1.1), they develop an 
infinitely convergent branch-and-bound algorithm using lower bounds derived 
from convex envelopes of xiy i for i = 1 , . . . ,  n, over rectangles in R 2 given by 12 in 
(1.3). When G ~ I, they suggest that the term xtGy can be written as xtz by 
accommodating the relationship z = Gy in the constraint set, whence their 
method becomes applicable. The algorithm we propose can also be used to solve 
jointly constrained bilinear programming problems BLP of the form (1.1)-(1.3). 
(Actually, as in A1-Khayyal and Falk [2], we can solve biconvex programming 
problems in which the linear functions c% and d'y in (11) are respectively 
replaced by convex functions f(x) and g(y). The only difference in the solution 
procedure is that this would lead to convex programming, rather than linear 
programming, lower bounding problems.) Our lower bounding linear program is 
obtained via a procedure that we call a Reformulation-Linearization Technique 
(RLT). This technique generates valid quadratic constraints that are subsequently 
linearized by defining new variables. The resulting linear program is shown to 
generate a lower bound that theoretically dominates that of A1-Khayyal and Falk 
[2], and that turns out computationally to be far tighter as well. Note, however, 
that in order to apply our RLT procedure, one does not need to transform x~Gy 
when G ~ I as in A1-Khayyal and Falk. We imbed this lower bounding linear 
program into a branch-and-bound algorithm that is shown to converge infinitely to 
a global optimum for BLP. Moreover, our convergence proof suggests various 
alternative admissible branching schemes, including one in which the partitioning 
can be performed throughout on only the x or y-variables, for example, which- 
ever is of lower dimension. Also, at each iteration, we can partition the problem 
based on either an x or a y variable to generate only two node sub-problems 
instead of the four nodes generated by A1-Khayyal and Falk. Computationally, 
this turns out to be a preferable strategy. Several of these admissible algorithmic 
strategies are computationally tested in order to propose an implementation 
scheme for our algorithm. 



382 It .  D. S H E R A L I  A N D  A.  A L A M E D D I N E  

The remainder of this paper is organized as follows. Section 2 presents the 
fundamental RLT scheme. Section 3 imbeds the resulting lower bounding linear 
program in a branch-and-bound algorithm and establishes its convergence. Sec- 
tion 4 presents computational results on test problems from the literature as well 
as on pseudo-randomly generated problems. Section 5 demonstrates that the 
proposed RLT procedure actually generates the convex envelope representation 
of a bilinear function over special triangular and quadrilateral polytopes in R 2, 
hence motivating its use. Section 6 concludes with recommendations for im- 
plementation and some possible extensions. 

Some specific notation used in the sequel is as follows. For a given real-valued, 
continuous function f defined on a convex set X C_ R n, we denote its convex 
envelope over X as fx (see, e.g. [12]). For a given optimization problem P, we 
denote its optimal objective value by v[P]. Finally, if gl(x)>1 0 and g2(x)>~ 0 are 
some two inequality constraints numbered by equations (#) and (##) ,  say, then 
by (#) .  ( ## )  we will mean the inequality gl(x)g2(x) >~ 0 obtained by algebraically 
multiplying the expressions for gl(x) and g2(x). 

2. A New Reformulation-Linearization Technique (RLT) 

In this section, we present the cornerstone of our methodology, namely, the 
Reformulation-Linearization Technique (RLT), that is used to generate tight 
linear programming based lower bounds. This procedure first generates valid 
quadratic constraints by using pairwise products of inequality constraints, or 
products of equality constraints with variables, and then subsequently linearizes 
these constraints by defining new variables. The bilinear objective term is 
similarly linearized, in order to produce a lower bounding linear program. 
Moreover, when the objective function is accommodated into the constraints in 
BLP as well as in this linear program through an auxiliary variable, the linear 
programming region projected onto the original variable space affords a tight 
polyhedral enveloping region for the closure of the convex hull of feasible points 
to the underlying bilinear program. In fact, as will be seen later, this polyhedral 
representation is exact in some special instances. We also remark here that a 
higher order variant of this scheme has been used by Sherali and Adams [21, 22] 
to generate a hierarchy of relaxations for linear pure and mixed-integer zero-one 
programming problems, spanning the spectrum from the linear programming 
relaxation to the (closure) convex hull of feasible solutions. 

The fundamental steps of the RLT procedure are composed of two sequential 
phases - the  reformulation phase, and the linearization phase. These are dis- 
cussed below. 

R E F O R M U L A T I O N  P H A S E  

To apply the RLT scheme to problem BLP given by (1.1)-(1.3), define the 
following bound factors from (1.3): 



A N E W  R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  383 

(x i - l i )>~O,  i = l , . . . , n  (2.1a) 

( u i -  xi)>~O, i=  l , . . . , n  (2.1b) 

( y j - L j ) > ~ O ,  j = l  . . . .  ,m  (2.1c) 

(Uj-yl)>>-O, j = l  . . . . .  m (2.1d) 

Also, let b 1 be an R-vector and let A1, and Dlr  denote the rth rows o f A  1 and D 1 , 

respectively. Then the inequalities (1.2a) in Z can be expressed as the following 
constraint factors: 

(b l r  - Air x - DarY ) >t O, r = 1 . . . . .  R .  (2.1e) 

In addition to the original constraints defining Z C3 f~, we now construct new 
implied nonlinear constraints by multiplying each of the constraints in (2.1) 
pairwise, including self products, in order to get various classes o f  constraints. As 
an illustration of such an operation, consider the multiplication of a set of bound 
factors with the set of inequality constraints in (2.1e): 

(x i - l i ) ( b l r - A l r x -  Dlry)>~O Vi, r .  

Expanding this gives 

- ( A l r X ) X  i - ( O l r Y ) X  i + l i ( A l r X  ) + l i ( O l r y  ) + blrX i >! l iblr 

for i =  1 , . . . , n ,  r = l  . . . .  , R .  

As far as the equalities in (1.2b) are concerned, all that one needs to do is to 
multiply each of them with each x i for all i and with each y~ for all j, in order to 
obtain the required class of equations. Then, if one were to consider an equality 
multiplied by any other linear expression or bound or constraint factor in (x, y), 
the resulting equation can be represented as a surrogate of the foregoing 
generated constraints, and so will be automatically implied by them. This is true 
even after executing the linearization step described subsequently below. 

The original BLP constraints, together with constraints generated using the 
above pairwise product operations, yield a new equivalent reformulation of the 
bilinear programming problem as explicitly given below, where R and R' are 
respectively the number of inequality and equality constraints defining Z in (1.2). 

B L P "  Minimize Op(x, y) - ctx + d'y + xtGy 

subject to (x, y) E Z A f/  (2.2a) 

- ( A l r X ) X  i -- (D, ,y)x  i + [ i (A l rX)  + li(Diry ) + b i rx  i ~ l i b l r ,  

i = l , . . . , n ,  r = l , . . . , R  (2.2b) 

( A l r X ) X  i + ( O l r y ) x  i - u,(A, ,x)  - u i ( O l r Y  ) - blrX i >t -u~b~r, 

i = l , . . . , n ,  r = l , . . . , R  (2.2c) 

- ( A l ~ x ) y  j - ( D l r y ) y  j + L j ( A I ~ X  ) + L j ( D I ~ y  ) + b]rYj >~ L jb l~  , 

j = l  . . . .  m, r = l  . . . . .  R (2.2d) 



384 H . D .  S H E R A L I  AND A. A L A M E D D I N E  

( A l ~ X ) y  j + ( D l r y ) y  j - Uj(A l~X ) - Uj(DI,y ) - b , , y j  >1 - -  U j b l r  , 

j = l , . . . , m ,  r = l , . . . , R  

XiX j - -  l j x  i - -  l i x  j ~ l i l j  , V 1  <~ i ~ j <~ n ,  

Y i Y j - -  

X i Y  j - -  

Y ~ Y j -  

x i y  j - -  

x i y j -  

- x~y~  

- - x i Y  i 

- - N i x  j 

- -YiYj  

Ljy~ - L~yj >~ - L ~ L j ,  Vl ~< i ~< j ~< m ,  

UjX i --  UiX j ~ --  UiUj , V l  ~ i ~< j <~ n ,  

U j y j -  U i y j > ~ - U ~ . U j ,  V l  < ~ i < ~ j < ~ m ,  

L j x  i --  l iy  j >~ - I ~ L j ,  V i  = 1 , . .  

U~x i - uiY j >1 - u i U  j , V i  = 1, 

+ U~x i + l iy  j >~ l iU j ,  V i  = 1 , .  

-t- L j x  i + u i Y  ] ~ u i L j ,  Y i  = 1, 

-~- U j X  i -~- l ix j ~ l iuj  , V i  = 1 , . .  

+ Uiy i + L i y  i >>- L i Ui ,  V i  = 1, 

, n ,  j = l ,  . . . , m ,  

. . , n , j = l , . . . , m ,  

. , n ,  j =  l , . . . , m ,  

. . , n ,  j = l , . . . , m ,  

, n , j = l , . . . , n ,  

. . , m , j = l , . . . , m ,  

(2.2e) 

(2.2f) 

(2.2g) 

(2.2h) 

(2.2i) 

(2.2j) 

(2.2k) 

(2.21) 

(2.2m) 

(2.2n) 

(2.20) 
t t t t t _ (bl i  A + b l j A  l i ) X  x [A l iD~j  + A l jDa~]y  + x tAt~A~jx  + y D I ~ D l j y  ~j 

- ( b~D~j  + b~jDl~)y  + bltb~j >10, V1 ~< i ~<j ~< R (2.2p) 

( A 2 r x ) X  i + ( D 2 r y ) x  i - bzrx  ~ = O,  i : 1 , . . . ,  n,  r = 1 , . . . ,  R '  (2.2q) 

( A z r x ) y  j + ( D 2 r y ) y  j -  bzrY j = O,  j = 1 , .  . . , m ,  r = 1 , .  . . , R '  . (2.2r) 

The restrictions given in (2.2b)-(2.2r)  are all valid implied nonlinear constraints. 
Note  that any suitable interproducts of the bound and constraint factors, con- 
structed as above, can be used to generate a r e f o r m u l a t i o n  of the BLP. Hence,  
such a reformulation can contain not only all possible products of (2.1) taken two 
a time, but can also include higher order products. Of course, the more the 
constraints included of this type, the stronger might be the resulting representa- 
tion obtained, but also, the larger the size of this representation. Hence,  from a 
computational viewpoint, a suitable compromise needs to be struck. 

LINEARIZATION PHASE 

The linearization is achieved through an appropriate variable  subs t i tu t ion  s trategy ,  

which transforms the generated set of nonlinear constraints ((2.2b)-(2.2r)),  to a 
set of linear constraints. Specifically, we substitute 

w q = x i y  j for all i = l , . . . , n ,  
X q = x i x  j foral l  l < ~ i < ~ j < - n ,  

Y q = y y j  foral l  l < ~ i < - j < ~ m .  

j = l , . . . , m ,  

This linearizes the reformulated nonlinear problem to the form 

(2.3) 



A NEW REFORMULATION-LINEARIZATION TECHNIQUE 385 

& &, 
LP(12): Minimize dOL(X, y, w)=--ctx + dry + .~, .~, gijwij 

i -1  j -1  

subject to (x, y, w, X, Y) C Z L 71 f~L, (2.4) 

where G = [go], ZL is the linearized set of constraints (2.2) under the transforma- 
tion (2.3), and where 

f~z. = {(x, y, w, X, g) :  (x, y) E f~, liL j ~ w~j <- u~Uj, 

f o r i = l  . . . . .  n, j =  l . . . . .  m 

Ill j <~ X 0<~ uiuj , 

f o r l < ~ i ~ j < ~ n ,  

for 1 ~< i~<j~< m} (2.5) 

Note that the bounds on the w, X, and Y variables in OL are implied by the 
constraints in Zc,  and are included here only for convenience when some 
constraints in Z L are later relaxed. Also, the terminology LP(f~) is used to 
emphasize that if the variable bounds defining f~ are modified by some partition- 
ing process, then the formulation of the corresponding problem (2.4) changes 
accordingly. In a likewise manner, let us call BLP as BLP(~)). 

Note that LP(Ft) is a relaxation of BLP(Ft) in the sense that for any solution 
(2, 37) feasible to the latter problem, there exist ~, X, Y, constructed via the 
substitution (2.3), such that, (£,)7, if, X, Y) is a feasible solution to the former 
problem, with the same objective value. However, the converse is not necessarily 
true, and so, LP(f~) yields a lower bound for BLP(f~). However, if an optimal 
solution to LP(f~) automatically satisfies (2.3), then this solution evidently solves 
BLP(f~) as well. More generally, if an optimal solution (2, y, w, X, Y) to LP(f~) 
yields 

~ gi,#i/= £tGfi ,  (2.6) 
i -1  j=l  

then (2, 37) solves BLP(ft) since there exists an (alternative) optimal solution to 
LP(~)  with x = 2, y = 37, and with (if, X, Y) satisfying (2.3). This statement is 
formally summarized below. Henceforth, let v[. ] be the value at optimality of 
problem [. ]. 

L E M M A  1. v[LP(D)] <<- v[BLP(~)] .  Moreover, i f (Y,  37, #,  X,  Y)  solves LP(D)  
m - -  - - t  - -  

and if Ei~ 1 ~]=1 gijwij = x Gy, then (£, 37) solves BLP(• ) .  

R E M A R K  1. The set Z L can have far too many constraints to be unarguably 
advisable in all instances. Hence, the question to be addressed is which con- 
straints in Z L should be constructed and which dispensed. Note that the objective 
in (1.1) has terms gijxiyj, and so if gij > 0, the cross products xiy j are diminished 
by minimizing the objective, and therefore, we need implied constraints that 



386 H. D. SHERALI AND A, ALAMEDDINE 

generate lower bounds on w~j. Similarly, constraints that provide upper bounds 
on w o are needed if g,j < 0 .  Hence, for example, we can generate constraints 
based on the following products to be included in Z / ,  where • denotes the 
constraint product operation. 

[(2.1a). (2.1c) and (2.1b). (2.1d), if g~i >>- 0], (2.7a) 

[(2.1a)-(2.1d) and (2.1b)-(2.1c), if g~/<0].  (2.7b) 

Actually, these constraints can be verified to correspond respectively to convex 
and concave envelopes of x~y/ over l~ ~< xi ~< ui, and L i ~ y~ <~ U/. In fact, the 
following result holds. Here, for a given function [-],  we denote by [ ' ] a  its 
convex envelope over the set ft. 

T H E O R E M  1. Consider L P ' ( O )  obtained f r o m  LP(a2)  by relaxing Z L to Z ~ ,  
where Z~ represents the constraints in Z and those linearized f r o m  (2.7), and by 
relaxing J2 c to X2. Then, 

~[LP'(ft)]--= minimum r I c ' x+  dry + 2 ~ [gi, xiYj]a: (x, y ) ~  Z 71ft I 

~=~ i=~ (2 .8)  

Proof.  By definition, we have v[LP'(~)] = minimum {c'x + d'y + Z~Zjgsjw~/: 
(x, y) C Z Nf t ,  (x, y, w) E Z + C? Z - } ,  where 

Z + =-- {(x, y, w): wi/>~ Ljx  i + liy / - l i L  ~ , Wij ~ U)2 i -}- u i y / -  uiUj,  Vi, j }  
(2.9a) 

and 

Z = ((x, y, w): we/<~ Uix i + l,y; - l ,U/, w ,  <~ L/x,  + u i y / -  u ,L j ,  Vi,  j}  
(2.9b) 

are the linearized forms of (2.7a) and (2.7b), respectively. Thus, 

v[LP'(ft)] = minimum {c~x + d'y + ~,  ~ g i /max  {L/xi  + liy j - leL j , 
(ij): gij ~0  

UjX i + uiyj - uiUj} + Z Z gi] min {Ujx i -t- liy / - l iUj,  
(e/); gij<o 

Ljxz + uiy j - uiLj}: (x, y) ~ Z f3 D} . (2.10) 

Now, recall from the definition of the convex envelope of x~yj over a rectangular 
region in R 2 (see A1-Khayyal and Falk [2] and AI-Khayyal [6]) that 

[gi/xiy/]a = gi/[xiyi]a = g i /max  {L jx  i + liy J - l i L  j , 

and 

U/x i + u i y / -  u,U/} , if g~/>I-0, (2.11a) 

[ giixiyj]a = gij min ( Uix , + lly j - 1,Uj, Ljx i + u~yj - u~Lj} , if gij < 0.  
(2.11b) 



A NEW REFORMULATION-LINEARIZATION TECHNIQUE 387 

Consequently,  (2.10) and (2.11) imply that (2.8) holds true, and this completes 

the proof.  [] 

C O R O L L A R Y  1. v[LP(I2)] exceeds Al-Khayyal and Falk's lower bound for BLP 
(n) .  

Proof. A1-Khayyal and Falk's [2] lower bound for BLP(ft)  when extended to 
the case G ¢ I, is precisely given by (2.8). Since u[LP(I~)] >~ v[LP'(FZ)], because 
LP'(f~) is a relaxation of LP(f~), the result follows. [] 

DESIGN OF A SUITABLE RLT SCHEME 

In light of the foregoing discussion on formulating a suitable linear bounding 
problem, we briefly suggest certain alternatives that can be investigated. 

Strategies 

1. Suppose that we solve the linear program LP'(~2), defined in Theorem 1, and 
obtain an optimum (2,)7, v?). Thenfixing (x, y, w)=-(~, )7, ff~), and subject to 
(x, y, w, X, Y ) E  OL, we can test which of the other constraints in Z L are 
individually unsatisfiable, or for which the maximum slack value (for the 
inequalities) is lesser than some threshold value, and then generate and include 
these constraints in the problem. 

2. Alternatively, we can also fix Xij = )(lj - £~x-j, for all 1 ~< i ~< j ~< n and Y~j = 
Yij =- Y~Yj, for all 1 ~< i ~<j ~< m, and test the feasibility of (2,)7, ~, X, Y) with 
respect to the individual constraints of Z L in order to generate a suitable subset 
that appears to tighten the linear programming relaxation. 

3. Also, certain manageable subsets of constraints can be identified with respect 
to which all possible second or higher order factor products are generated. 

In our  computational experiments, we attempted strategy 2 (see Remark 7 for 
details), and we recommend the investigation of other such strategies for future 
research. 

3. A Branch-and-Bound Algorithm 

Having selected some suitable RLT  scheme, we can imbed the corresponding 
lower bounding linear program in a branch-and-bound algorithm where the 
partitioning is performed by decomposing f~ into sub-hyper-rectangles. Hence,  at 
each stage k, we have a set of active nodes (k, t) for t in some index set T~. 
Associated with each node (k, t) of the branch-and-bound tree, we have a 
hyper-rectangle D (k't) replacing f~, with the corresponding node subproblem being 
the bilinear program BLP[f~(k")], and the corresponding lower bounding linear 
programming problem being LP[f~(k't)]. To begin with, when k = 0, we have 
T 0 = {1}, and f~(0,1) _ fL Thereafter ,  at each subsequent stage, having selected an 



388 H. D. S H E R A L I  A N D  A. A L A M E D D I N E  

active node,  we partition it into two subnodes, and analyze these two new nodes, 
in order to derive the set of active nodes at the subsequent stage. 

Below, we give a theorem that is central to the branching or partitioning 
process. Although this is stated relative to the original bilinear programming 
problem, it is applicable at any node subproblem as well. 

T H E O R E M  2. Assume  that LP(g2)  includes the constraints generated via the 
products  in (2.7) and let (2, y,  ff~, X ,  Y )  be an optimal solution. Determine 

( p ,  q) E argmax [gq(2i~ j - v?q)]. (3.1a) 
(i,j) 

Then,  i f  09L(X, y, 1~) <:~ ~3(2, y), we have, 

lp < 2p < up ,  and Lq ( yp < Uq. (3.1b) 

Proof.  For any i, j, one has the following constraints included in LP(Y~), 

wq >~ L jx  i + liy j - l iL j , (3.2a) 

wq >i Ujx i + uiY j - u iU j , (3.2b) 

wq <~ Ujx i + liy j - l iU j , (3.2c) 

wq <~ Ljx  i + uiy j - u iL  j . (3.2d) 

Now, suppose that 2, = li. Then (3.2a) implies that wii~>fijl~ and also (3.2c) 
implies that ff;q <~ yil~ which gives ?q  = 37ili --- 2iy i . Similarly, ~q ~ 2~yj if 2~ = u i or 
37j = Lj or 37j = Uj. Consequently, since 09L(2, y, ff~)< 09(2, Y)  implies that 

E E g,G < Z E gd,5, 
i j i j 

this yields gpqWpq "<gpqXpyq where (p ,  q) is given by (3.1a). Therefore from 
above, this in turn implies that (3.1b) holds, and the proof is complete. [] 

Theorem 2 leads to the following Branching Rule  as applied at node zero. 
Naturally this is symmetrically applicable at all other nodes as well. 

B R A N C H I N G  VARIABLE SELECTION AND PARTITIONING STRATEGIES 

Branching Rule  1: Find 

(p ,  q) ~ argmax [ g i j ( 2 i Y j  - I~ij)] (3.3a) 
(i,J) 

and compute 

Up = ~ [gm(Ypfij - win)l, Vq = ~ [giq(XiYq - I~iq)]. (3.3b) 
/=1 i=1 



A NEW REFORMULATION-LINEARIZATION TECHNIQUE 389 

partition lp <~ xp <~ Up into lp <~ xp <~ 2p and 2p <~ xp <~ up. (3.3c) 

Otherwise, 

partition Lq ~ yq ~ Uq into Lq <~ yq <<- fiq and yq ~< y, ~ Uq . (3.3d) 

Branching Rule 2. As an alternative strategy, we can use absolute values in (3.3b) 
and compute 

vp = ~ Igpj(2pyj- wpj)l, Vq = ~ Igiq(.~iYq- Wiq)l . 
j = l  /=1 

(3.3b)' 

and then adopt (3.3c) and (3.3d). 
We note here that whereas the underlying motivation for employing (3.3b) is 

guided by the contribution of each variable to the gap between the lower and 
upper  bounds on the objective function value, the reason behind incorporating 
the absolute value operator as an alternative in (3.3b)', is to base the partitioning 
on the absolute discrepancy between the relevant components of w and the 
corresponding terms in xty as dictated by feasibility to BLP'. 

Other branching rules are also possible. As an example, and as a consequence 
of the convergence theorem (given later), branching could be made on the set of x 
or y-variables alone, instead of on both x and y sets of variables. This along with 
another rule are presented after the Convergence Theorem (Theorem 3). But first 
we present the schema of our algorithm. 

OUTLINE OF THE ALGORITHM 

Initialization Step. Initialize Ft °1 =f~ and let T O = {1} index the single node 
corresponding to f~ = floJ (henceforth referred to as node ~o~ ) at stage zero of the 
branch-and-bound tree. Solve LP(f~ °I) to obtain the partial solution (x °, y0, w0). 
If q~L(X °, yO, W0)= ~b(X o, y0) terminate with (x °, yO) as an optimal solution to 
BLP(F~). Otherwise, let L B o = L B o l = ~ L ( X  °, yO, wO), and U B o = U B o l  = 
q~(x o, yO), be the current lower and upper bounds, and determine a branching 
variable for the node f~ol using (3.3) with (2,)7, ~ )  = (x °, y0, wO). Put k = 1, let 
the selected node at stage zero be t * =  1, and go to the Main Step. 

Main Step (Stage k). Partition the node f~(~ i)t*, where t *E  T~ 1, into two 
subproblem nodes according to (3.3). Call these nodes Ft ~1 and f~2. Let the nodes 
at stage k be 

( ~ k ~ , t ~ T k } = _ f n  k ' , ~ 2 } U ( ( l  (k ' ) ' , t E T  k 1 , t ~ : t * } .  

For each t = 1, 2 solve LP(~  kt) and let the corresponding (partial) solution 
obtained be denoted by (x kt, y~, wkt). Put LBk, = ~L(x k~, yk~, w~,), UB~, = (I)(x k~, 

k t  
y ), and use (3.3) to select and store the respective branching variables to be 



390 H. D. SHERALI AND A. ALAMEDDINE 

used for these nodes, when and if they are partitioned. (Note that the similar 

entities (x k', y~', w~),  LB~¢, UBk,, and the branching variable choices, are known 
for the other  nodes fl(kt), t E Tk, t > 2, from stage k - 1.) 

Updating Operations 

1. Compute  the stage k upper bound as 

UB k = min {UB(~_I), UBk~ , UBk2}, and let (x k, yk) (3.4a) 

be the corresponding incumbent for which UB~ = ~ (x  k, yk). 

2. Compute  the stage k lower bound along with the index t* E T~ as 

LB k = LBkt.,  where t* E argmin ( L B ~ ,  t E Tk} . (3.4b) 

3. Accordingly, update the active set of nodes at stage k as 

T k ~-- T k - { t E  Tk: LBk, ~> UB~}. (3.4c) 

Termination check. If T k = qS, then STOP; the current incumbent solution is 
optimal for BLP. Otherwise, increment k by one and return to the Main Step. 

R E M A R K  2. Practically, we can employ a given termination tolerance e > 0 in 
(3.3c) for fathoming only marginally improving nodes by replacing T k with 
T k - { t E  Tk: LBkt + e ~>UBk}. Specifically, we suggest using 

e : Max {el ,  [UB 0 - L B 0 l e 2 }  

where e I > 0  and e 2 > 0  are some small (0.001-0.01) user specified tolerances. 

CONVERGENCE ANALYSIS 

We now establish the convergence of the above algorithm. A1-Khayyal and Falk's 
[2] algorithm is based on the BLP formulation in Remark 1. They perform 4-way 
rectangular partitions, and use the equicontinuity argument of Horst  [10]. Horst 's  
1986 paper  is an updated version of his 1976 paper where he bases his conver- 
gence argument on the same node selection strategy as we use in this research, 
but assumes a consistency property whose verification in special cases is the major 
burden of the proof. Our proof has the same skeletal framework as Horst 's [11], 
but its content is different, and the equivalent step in the proof of verifying the 
consistency property actually reveals different convergent variants of the al- 
gorithm. We also note that our choice of iterates which establish the convergence 
argument is different, since we choose these iterates in a specific manner  based on 
a given nested partition. Additionally, our convergence theorem shows that the 
partitioning can be performed to create two subnodes based on current iterate 
values, and can be readily extended to affirmatively answer the open convergence 
question posed by A1-Khayyal and Larsen [7]. Moreover ,  since we create only 



A NEW REFORMULAT1ON-LINEARIZATION TECHNIQUE 391 

two new nodes instead of four as done by A1-Khayyal and Falk [2], we show in 
the sequel that convergence is guaranteed even if we partition on only one of the 
sets of variables x or y. This may be computationalty advantageous when n is 
much smaller than m, or vice versa. We also remark here that as evident from the 
proof of Theorem 3 below, the foregoing algorithmic modifications are valid even 
for A1-Khayyal and Falk's [2] procedure which uses convex envelopes over 
hyper-rectangles at the lower bounding step. 

Before we state and prove the convergence theorem, we need the following 
lemma because of the peculiar nature of RLT. 

L E M M A  2. At any stage k, let the node g2 k~* be split into nodes g~(k+a),l and 
~(k+i),2 at stage (k + 1). Then, 

min {LB~k+I~,I, LB(k+IL2 }/> LBkr 

Proof. Let us show that LB(k+I~, I ~>LBkt, by showing that LPR(12(k+l)'1)C_ 
LPR(f~'*), where LPR(. ) denotes the feasible region of LP(. ) in the linearized 
(x, y, w, X, Y)-space. The case of LB(k+I~, 2 ~> LBkr is symmetric. Hence, without 

loss of generality, suppose that f~(~+l),~ is obtained from f~kt* by modifying 
¢ y Xp <~ Up to Xp <~ up, say, where Up < up. (The argument for modifying a lower 

bound is identical.) Now, consider any (2,)7, #,  X, Y) E LPR(f~(k+~'z). Note that 
the constraints of LPR(f~ (k+l)'~) and LPR(f~ kr) are identical, except for those 

t constraints involving the upper bound on Xp. For these constraints, since 2p <~ up 
and Up < up, we have 2 e ~< up. Furthermore, for any original problem constraint 
a 'x  +/3 'y  ~> y, the product with the factor (Up-  xp) yields the linearized con- 
straint 

+ - + - 

t where X p ~ ( x p ) x  and Wp=-(xp)y. Since (at2 + [ 3 ~ - 7 ) > 1 0  and Up>Up, w e  

have, 

,- , t- >~ (olt2p fl Wp . x + >i x +  '37- + ' - - 

Therefore,  (2, 37, ~,  X, Y ) ~  LPR(~ k'*) as well, and this completes the proof. [] 

T H E O R E M  3. (Main Convergence Result). The proposed branch-and-bound 
algorithm either terminates finitely with an optimal solution to BLP(gl ), or else, it 
generates a sequence of  iterates {(x k, y~)}, along with a sequence of nonincreasing 
upper bounds { UBk} and a sequence of  nondecreasing lower bounds { LBk}, such 
that 

lim LB~ = LB = lim UB k = UB = z* --= u[BLP(fl)].  

Proof. By Lemma 1 and Theorem 2, the algorithm is well defined, and if it 
terminates finitely, the solution (x k, yk) is optimal to problem BLP(f~). Hence, 



392 H.D. SHERALI AND A. ALAMEDDINE 

suppose that an infinite sequence is generated. Clearly, (UBk} is nonincreasing. 
Furthermore,  {LBk} is nondeereasing by Lemma 2. 

Now, since an infinite sequence is generated, some branch in the enumeration 
tree is comprised of an infinite number of descendants. Associated with this 
branch is a nested sequence of  partitions 

12 k'(k), t (k)  E T k , V @ K, satisfying ~k't(~') C 12 kt(k) 

f o r k ' = m i n ( k " E K :  k " > k } ,  V k E K ,  

where K is an index subsequcnce of 0, 1, 2 , . . . ,  chosen suitably as follows. Note 
that a node can recur for several stages. Hence, the particular k E K used for 
which f~kt(k~ identifies the partition at a given node in the nested sequence, is that 
at which this partition is branched on for the next stage. Accordingly, t (k)  
corresponds to the particular t* E T k . Hence, by (3.4h) and the main step of the 
algorithm, LB~ -= LBk,(~ ) , V k  E K. 

Consequently, we have, 

d~(Xk~(k), ykt(~)) _ ~c(Xk~(~), yk~k), Wkt(k)) >1 UB k _ LB~ > O, V k  E K .  

( 3 . 5 )  

Now, because f~,(k)  k E K, is a nested sequence, there exists some variable, 
say, x e without loss of generality, that is selected as the branching variable, and 
has its interval split infinitely often. Accompanying the splitting of the Xp interval, 
there must be some yq in (3.3) which occurs infinitely often. Call the index set of 
iterates in K when (p ,  q) occurs in (3.3a) as K~ C K. Hence, from (3.3a), we get 

gij[x  - r -  - - ,  Y j opqt2~ p Y q ~/pq ] 

V(i, j ) ,  and Vk E K 1 . Summing up over all (i, j)  one gets using (1.1), (2.4), and 
(3.5) that, 

0 < UB k - LB~ <~ Cb(x ~t(~, yk~(~)) _ Cbc(Xk,(k), y~,(~), Wk~(k)) 

r kt(k) . kt(k) __ . kt(k)l  <~ mn gpqtXp yq Wpq I , V k  E K 1 . (3.6) 

Next, let t-pflk'(~), %," ~(~)~j and ~_q[l_ ~'(~, U~ '(~] represent the intervals for Xp and yq, 

respectively, in the sequence (~)~(kl}. Since the sequence 

(x  ~(~), y~'(k), w ~'(~, l pkt(k) , Up" kt(k) , ~ kt(k) , U qkt(k) } K 1 

is bounded, there exists a convergent subsequence indexed by K 2 C_ K~, with limit 
point 

(X ,  y ,  W ,  [p,  Hp,  Z q ,  ( f f q ) .  

Because of the nested nature of {lq~(~)}, k ~ / ( 2 ,  and by the partitioning in (3.3c) 
([k ' t (k ' )  k'r(k')', and (3.3d), we know that for each k ~ Ke,  x ~'(~) @,_p_ , up ), V k ' ~  1£2, 

[[kt(k) ktfk)~ k'  > k. But x~ ' ~  ~ ~.p , up ~, V k  ~ K2, and so, 2p @ [tp, @]. This implies that 
2p = [p or 2p = @, since otherwise, we would have a contradiction with the 
foregoing statement. Following the proof of Theorem 2 over the iterates k ~ K a , 



A NEW REFORMULATION-LINEARIZATION TECHNIQUE 393 

we see that this in turn implies that I~pq = Xp37q. Hence,  taking limits in (3.6) as 

k ~ 2, k E K 2 C_ K l we get, 

O ~ < U B -  LB ~< q~(£, 37)-  @L(2, 37, ff)~<O (3.7) 

which means that equality must hold throughout,  and so, UB = L B .  Since 
LB k ~< z* ~< UB k Vk ~ K, we deduce that LB = z* = UB, and this completes the 
proof.  [] 

C O R O L L A R Y  2. Along any infinite branch of  the branch-and-bound tree, any 
accumulation point of  the sequence of linear programming solution iterates gener- 
ated at the nodes solves BLP(O) .  

Proof. By selecting the index sets K _D K 1 _D K 2 as subsets of the index set 
corresponding to the given convergent subsequence, and proceeding as in the 
proof  of Theorem 3, we have by (3.7) that ~(~,  37) = ~L(2,  37, ~) .  But 

z* ~> LB = (IOL(3C , 37, I~ )  since LB k = @L(X *t(k), yktfk)wkt(k)) for all k E K ,  

and so we must have z * =  ~(2,  )7). This completes the proof. [] 

R E M A R K  3. Note from the convergence proof, that one need not necessarily 
branch by splitting both x and y-variable intervals within the algorithm. Branching 
could be made on the set of x or y-variable intervals alone, according to which of 
n or m is smaller, or according to which of x or y has a fewer number  of 
components  appearing in the cross-product terms in the objective function. In 
their branch-and-bound cutting plane algorithm for globally minimizing a function 
f (x ,  y) over a certain closed set, Muu and Oettli [19] branch only on the y-space 
using the iterates obtained from lower bounding subprograms. Although the 
admissibility of such a rule in the context of the foregoing type of algorithm 
(including A1-Khayyal and Falk's [2] algorithm) was heretofore unknown, its 
consequence is fairly intuitive, since if for example n = 1 or 2, we can expect 
problem difficulty to be relatively low, even if m is fairly high. Hence,  we have 
the following rule. 

Branching Rule 3. Suppose that we have chosen the x-variables for splitting 
intervals (the case of the y-variables is treated similarly). Find (p ,  q) as in (3.3a), 
and parti t ion 

lp <- Xp ~ Up into lp <- Xp <- 2p and 2p ~ Xp <~ Up 

C O R O L L A R Y  3. Theorem 3 continues to hold under Branching Rule 3. 
Proof. Note that (3.6) continues to hold, and in the limit, 2p = [p or 2p = @ 

also holds. Hence,  (3.7) holds true, and the required result follows. [] 

R E M A R K  4. Suppose that we are using Branching Rule 3, and that the original 
bilinear program has only equality constraints. Then in constructing RLT prod- 
ucts we can multiply the equality constraints with only the x-variables (to avoid 



394 H. D. S H E R A L I  A N D  A. A L A M E D D I N E  

creation of y~yj products since we are splitting the x-intervals), and also use 
products of the bound factors (xi - li)/> 0 and (u i - x~) >~ 0 on each other, and on 
the other y-variable bound factors ( y ~ -  Lj)i> 0 and ( U j -  yj)/> 0, without again 
using products of the y-factors on each other. Since the original problem BLP(f~) 
does not contain YiYj cross-products, this might give a manageable and tight 
enough relaxation. 

ENHANCEMENT OF ALGORITHMIC FATHOMING POWER 

In any branch-and-bound algorithm, an active search for good quality incumbent 
solutions can greatly improve the computational efficiency of the algorithm by 
enhancing its fathoming power, without hampering any convergence arguments. 
Hence, instead of letting UBkt = dp(x~', ykt) at node qb ~t, we could let UBkt equal 
some improved heuristic solution value found, and Theorem 3 would continue to 
hold. Such a heuristic may be implemented as follows. 

Suppose that at some node, we have solved a linear program LP(~)) and 
obtained a solution (2,)7). As in A1-Khayyal and Falk [2], we can minimize a first 
order approximation of qb(., • ) at (2,)7), but bound the variation about (2, ~). 
Hence, we solve the linear program 

L, = Minimize {c~x + d~y + x ' (Gy)  + (2'G)y: (x, y) @ Z (3 Ft ~ ( ~ }  
(3.8a) 

where 

fia : { ( x , y ) :  ]x~-2 i l<~(u~- l~)~Vi ,  a n d l y j - y j l  < ~ ( U j - L j ) 6 V j )  

for some 0 < ~ ~< 1. (3.8b) 

This is a (trust region) modified version of the Acceleration of Convergence 
Technique ( A C T )  used in A1-Khayyal and Falk [2]. Similar to ACT, the next step 
searches along the direction (2, 33) - (2,)7), where (2, 33) solves (3.8), in order to 
possibly find an improved incumbent. In our computational implementation of the 
algorithm, we used this heuristic whenever a new incumbent was found. 

4. Computational Experience 

In this section, we report on our computational experience using available test 
problems from the literature, as well as a selected set of pseudo-randomly 
generated problems with coefficients drawn uniformly from the interval 
[-100,100].  For the sake of comparison we also implemented a relaxed variant of 
our algorithm in which the linear program LP'(f~) defined by Theorem 1 is used 
to compute lower bounds. As shown in Theorem 1, this version is tantamount to 
computing lower bounds via convex envelopes of gqxiy j over the rectangles 
l i <~ x i <~ ui, Lj <~ yj <~ Uj V(i, j) ,  and is therefore equivalent to AI-Khayyal and 



A NEW R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  395 

Falk's [2] algorithm for the case G = I, and is a direct generalization of their 
algorithm for the case G ~ I. We call this version the Convex Envelope over 
Hyper-rectangles (CEH)-based algorithm. For our lower bounding linear pro- 
gram, we first solve LP'(f~), and if this does not fathom the node subproblem, we 
generate and solve LP(f~) as defined in Section 2, except for the constraints in 
(2.2g)-(2.2j) for i Cj. The omission of these constraints reduces the size of 
LP(f~) without deteriorating its objective value for most instances. Both al- 
gorithms have been coded in Standard Fortran 77 and have been implemented in 
double precision arithmetic on an IBM 3090 computer. For solving the linear 
programming lower bounding problems, we have used the commercial package 
MINOS 5.1 developed by Murtagh and Saunders at the Stanford Optimization 
Laboratory, Stanford University, with an optimality accuracy tolerance of 1.0 x 
10 -6. The e-termination tolerance used for our algorithm is given by Remark 2 
with e 1 = 0.001 and e 2 = 0.01. The same e-tolerance was used for the CEH-based 
algorithm. 

Table I gives the results on test problems from the literature, where the 
abbreviations are the author's initials as noted in the References section. Observe 
that our algorithm solved all the problems except AF0 at node zero itself via the 
initial linear program LP(fl). Problem AF0 happens to be a jointly constrained 
bilinear program [BLP(JC)] with a nonextremal boundary point optimum. From 
our experience, such problems appear to pose the greatest difficulty. The 
CEH-based algorithm was unable to solve this problem within the preset limit of 
103 nodes reached in 55 CPU secs. Also, problems ALl ,  AL2, ZW1, and AF3 
are all jointly constrained problems, but ones that exhibit extreme point optimal 
solutions. Such BLP(JC) problems appear to be relatively less hard to solve. Note 
again that AF3 remains unsolved within the limit of 103 nodes reached after 115 
CPU secs using the CEH-based algorithm. The remaining problems in Table I are 
all separably constrained problems [BLP(SC)], and this class of problems seems 
to pose the least level of difficulty. Both algorithms solve these problems with 
comparable efficiency. Of noteworthy mention is Problem SS1 which was solved 
by Sherali and Shetty [24] after generating two polar cuts over two major loop 
iterations. This was solved at node zero by our algorithm in 14.5 CPU secs, and 
was solved by the CEH-based algorithm after exploring 21 nodes in 17 CPU secs. 

We remark here that A1-Khayyal and Falk [2] suggest a heuristic branching 
scheme that partitions a node into (two or) four subnodes based on the solution 
produced after applying the Acceleration of Convergence Technique (ACT), 
mentioned in Section 3 above. This significantly improves the computational 
performance, where problems AF0, AF1, AF2, and AF3 are respectively solved 
after enumerating 9, 5, 1, and 13 nodes. In our computations, we have used ACT 
only to obtain improved upper bounds, while preserving the theoretically admiss- 
ible branching scheme. 

Since there appears to be a distinction between the solution difficulty of 
problems from the classes BLP(SC) and BLP(JC), we pseudo-randomly gener- 



T
ab

le
 I

. 
Jo

in
tl

y 
an

d 
se

pa
ra

bl
y 

co
ns

tr
ai

ne
d 

B
L

P'
s 

fr
om

 t
he

 l
it

er
at

ur
e 

A
lg

or
it

hm
 

So
ur

ce
 

B
L

P 
L

P 
L

B
 0 

U
B

 0
 

U
B

 f 
N

 
N

op
 t 

N
 ..

...
. 

C
P

U
 

Pr
op

os
ed

 
A

lg
or

it
hm

 

A
L

l 
[ 

2,
 

1]
 

[ 
5,

 
16

] 
-2

.5
00

 
-2

.5
00

 
-2

.5
00

 
0 

0 
1 

4 
A

L
2 

[ 
2,

 
1]

 
[ 

5,
 

16
] 

2.
00

0 
2.

00
0 

2.
00

0 
0 

0 
1 

4.
5 

K
K

1 
[2

, 
4]

 
[1

4,
 

74
] 

3.
00

0 
3.

00
0 

3.
00

0 
0 

0 
i 

3.
6 

W
Z

1 
[ 

2,
 

4]
 

[ 
5,

 
40

] 
-2

1.
86

6 
-2

1.
86

6 
-2

1.
86

6 
0 

0 
1 

4 
SS

1 
[ 

4,
 

8]
 

[1
4,

 1
36

] 
9.

00
0 

9.
00

0 
9.

00
0 

0 
0 

1 
14

.5
 

A
F0

 
[ 

2,
 

2]
 

[ 
5,

 
23

] 
-1

.5
00

 
-0

.9
37

5 
-1

.0
83

33
 

11
 

10
 

7 
14

 
A

F1
 

[1
0,

 1
0]

 
[6

5,
39

5]
 

-4
5,

37
97

 
-4

5.
37

97
 

-4
5,

37
97

 
0 

0 
1 

12
 

A
F2

 
[1

0,
 1

0]
 

[6
5,

39
5]

 
-4

2.
96

25
 

-4
2.

96
25

 
-4

2.
96

25
 

0 
0 

1 
15

 
A

F3
 

[1
0,

 1
3]

 
[6

5,
49

5]
 

-7
94

.8
55

 
-7

94
.8

55
 

-7
94

.8
55

 
0 

0 
1 

29
 

A
lg

or
it

hm
 

So
ur

ce
 

B
L

P 
L

P 
L

B
 0 

U
B

 o
 

U
B

 I 
N

 
N

ov
 t 

ga
m

ax
 

C
P

U
 

A
L

l 
[ 

2,
 

1]
 

[ 
5,

 
5]

 
-2

~8
00

 
-0

.8
00

 
-2

.5
00

 
11

 
9 

3 
5 

A
L

2 
[ 

2,
 

1]
 

[ 
5,

 
5]

 
2.

00
0 

2.
00

0 
2.

00
0 

0 
0 

1 
3.

5 
K

K
1 

[2
, 

4]
 

[1
4,

 
20

] 
3.

00
0 

3.
00

0 
3.

00
0 

0 
0 

1 
3 

C
E

H
- 

Z
W

1 
[ 

2,
 

4]
 

[ 
5,

 
8]

 
-2

1.
86

6 
-2

1.
86

6 
-2

1.
86

6 
0 

0 
1 

3.
5 

B
as

ed
 

SS
1 

[4
, 

8]
 

[1
4,

 
24

] 
20

74
.0

0 
38

.0
0 

9.
00

0 
21

 
8 

20
 

17
 

A
lg

or
it

hm
 

A
F0

 
[ 

2,
 

2]
 

[ 
5,

 
6]

 
-3

.0
00

 
-0

.0
75

0 
-1

.0
83

33
 

10
3+

 
51

 
20

 
55

+ 
;~

 
A

F1
 

[1
0,

 1
0]

 
[6

5,
11

0]
 

-4
6.

00
5 

-4
5.

37
97

 
-4

5.
37

97
 

11
 

2 
11

 
14

.5
 

A
F2

 
[1

0,
 1

0]
 

[6
5,

11
0]

 
-4

3.
12

5 
-4

2.
47

5 
-4

2.
96

25
 

7 
4 

3 
10

 
A

F3
 

[1
0,

 1
3]

 
[6

5,
11

3]
 

-9
45

.4
51

 
32

10
.8

2 
-7

94
.8

55
 

10
3+

 
35

 
34

 
11

5+
 

Le
ge

nd
: 

B
L

P 
= 

Si
ze

 o
f 

or
ig

in
al

 B
L

P[
n 

+ 
m

, 
# 

co
ns

tr
ai

nt
s]

 
N

 =
 N

um
be

r 
of

 n
od

es
 e

xp
lo

re
d 

L
P 

= 
Si

ze
 o

f 
L

P
(N

O
D

E
) 

re
la

xa
ti

on
 [

# 
va

ri
ab

le
s,

 #
 

co
ns

tr
ai

nt
s]

 
N

ov
 ~ =

 N
od

e 
at

 w
hi

ch
 o

pt
im

um
 i

s 
fo

un
d 

U
B

 o
 =

 I
ni

ti
al

 U
pp

er
 B

ou
nd

 
N

 ..
..

 
= 

M
ax

im
um

 n
um

be
r 

of
 a

ct
iv

e 
no

de
s 

pe
r 

st
ag

e 
;~

 
U

B
 i 

= 
Fi

na
l 

In
cu

m
be

nt
 

C
P

U
 =

 T
ot

al
 e

xe
cu

ti
on

 t
im

e 
(C

P
U

 s
ec

on
ds

) 
;>

 
+ 

= 
E

xc
ee

de
d 

pr
es

et
 l

im
it

 



A NEW REFORMULATION-LINEARIZATION TECHNIQUE 397 

ated problems from both classes to further test our algorithm. Table II provides 
results on a sample of BLP(SC) problems. Again, all problems in this class were 
solved at node zero itself by our lower bounding LP(f~) problem. Of course, one 
may not expect this to be generally true, since otherwise, the NP-Hard quadratic 
concave minimization problems would be polynomially solvable. The CEH-based 
algorithm, on the other hand, experienced wider gaps between the initial lower 
bound and the optimal value, and needed to explore several more nodes with 
substantially greater effort, being unable to solve several problem instances within 
the preset node limit. 

Table III gives results on BLP(JC) problems. The problems where both 
algorithms generated zero (or very few) nodes are evidently easier to solve. Of 
the others, the CEH-based algorithm required far greater effort, with our 
algorithm requiring an enumeration beyond node zero for only two instances. 

Finally, we remark on a particular, noteworthy, computational experiment. 

REMARK 5. 4-Node vs. 2-Node Partitioning Strategy. Recall that A1-Khayyal 
and Falk's [2] algorithm is based on a 4-node branching scheme, while we have 
shown that a 2-node partitioning process is also theoretically admissible. We 
attempted the 4-node partitioning scheme on the test problems from the litera- 
ture, and found a substantial deterioration in both algorithms. For Problem AF0 
where our algorithm requires branching in Table I, the 4-node scheme enumer- 
ated 93 nodes in l l0CPUsecs .  For the CEH-based algorithm, this scheme 
resulted in the following values of (N, CPU) for ALl ,  SS1, AF0, AF1, AF2, and 
AF3, respectively: (81,43), (201+, 125.5+), (201+, 115+), (41,42.5), (37,45) 
and (201+,226+). Evidently, the flexibility of partitioning on either x or y- 
variables and at different solutions as afforded by the 2-node branching process, 
pays off very favorably. 

5. Convex Hull Characterizing Properties of RLT for Special Instances 

In this section, we provide some motivation for the use of RLT and its observed 
computational success by demonstrating that a particular application of this 
technique to certain triangular and quadrilateral D-polytopes in R 2 (as introduced 
by Sherali and Alameddine [231), followed by a projection onto the original 
variable space, produces the exact convex hull representation for these cases. 
Hence, the reformulation technique constructs the exact convex envelope of the 
function xy over such polytopes, and so the bounding linear program recovers the 
optimal objective value of the underlying bilinear program. This property plays 
two roles. First, it motivates the use of RLT in producing sharp representations 
for BLR Second, if partitioning is performed in A1-Khayyal and Falk's [2] 
algorithm so that f~ is decomposed into the cartesian product of such polytopes, 
then the convex envelope based bound would match that produced by such a 
restricted application of RLT. This statement is in the same spirit as Theorem 1. 



T
ab

le
 I

I.
 

R
es

ul
ts

 o
n 

ps
eu

do
-r

an
do

m
ly

 g
en

er
at

ed
 B

L
P(

SC
)'

s 

A
lg

or
it

hm
 

Pr
ob

. 
N

am
e 

B
L

P 
L

P 
L

B
 o 

U
B

o 
N

 
N

op
 t 

N
,m

,, 
C

PU
 

¢,
aa

 

G
~ 

Pr
op

os
ed

 
A

lg
or

it
hm

 

SC
1 

[2
:4

, 
4]

 
[ 

27
,1

12
] 

-1
95

58
.0

 
-1

95
58

.0
 

0 
0 

1 
4.

1 
SC

2 
[2

:4
, 

8]
 

[ 
27

,1
90

] 
-2

09
30

0.
0 

-2
09

30
0.

0 
0 

0 
1 

4.
4 

SC
3 

[3
:5

, 
10

] 
[ 

44
,3

09
] 

-1
9.

00
73

 
-1

9.
00

73
 

0 
0 

1 
5.

4 
SC

4 
[3

:5
, 

I2
] 

[ 
44

,3
66

] 
0.

00
0 

0.
00

0 
0 

0 
1 

3.
7 

SC
5 

[6
:3

, 
12

] 
[ 

54
,4

05
] 

-1
36

.2
49

 
-1

36
.2

49
 

0 
0 

1 
7.

8 
SC

6 
[7

:4
, 

12
] 

[ 
77

,4
99

] 
-2

06
46

2.
66

 
-2

06
46

2.
66

 
0 

0 
1 

14
.1

 
SC

7 
[7

:4
, 

12
] 

[ 
77

,4
30

] 
-2

98
27

6.
11

 
-2

98
27

6.
11

 
0 

0 
I 

20
 

SC
8 

[5
:4

, 
12

] 
[ 

54
,4

13
] 

-2
92

04
7.

78
 

-2
92

04
7.

69
 

0 
0 

1 
11

 
SC

9 
[4

:5
, 

12
) 

[ 
54

,4
13

} 
-1

47
28

14
.2

7 
-1

47
28

14
.2

9 
0 

0 
1 

I4
.3

 
SC

10
 

[7
:6

, 
10

1 
[1

04
,5

32
] 

-1
16

00
18

.4
4 

-1
16

00
18

.4
4 

0 
0 

1 
27

 
S

C
ll

 
[7

:7
, 

12
] 

[1
19

,6
64

] 
-1

92
30

88
.8

2 
- 

19
23

08
8.

82
 

0 
0 

1 
69

 

A
lg

or
it

hm
 

Pr
ob

. 
N

am
e 

B
L

P 
L

P 
L

B
 0 

U
B

 o 
N

 
N

op
 , 

N
 ..

...
 

C
P

U
 

C
E

H
- 

B
as

ed
 

A
lg

or
it

hm
 

SC
1 

{2
:4

, 
4]

 
[2

7,
 

36
] 

-1
99

37
.0

 
-1

32
38

.0
 

10
3+

 
80

 
3 

89
+ 

SC
2 

[2
:4

, 
8]

 
[2

7,
 

40
] 

-2
09

30
3.

0 
-2

08
90

7.
0 

3 
1 

2 
4.

5 
SC

3 
[3

:5
, 

10
1 

[ 
44

, 
70

] 
-4

70
46

.3
6 

65
25

.5
7 

10
3+

 
64

 
44

 
10

5+
 

SC
4 

[3
:5

, 
12

] 
[ 

44
, 

72
] 

0.
00

0 
0.

00
0 

0 
0 

1 
3.

7 
SC

5 
[6

:3
, 

12
] 

[ 
54

, 
84

] 
-1

95
6.

23
 

-5
5.

59
 

10
3+

 
88

+ 
7 

81
 

SC
6 

[7
:4

, 
12

] 
[ 

77
,1

24
] 

-2
43

49
2.

84
 

-1
40

62
8.

17
 

25
 

14
 

4 
30

 
SC

7 
[7

:4
, 

12
] 

[ 
77

,1
22

] 
-3

36
89

6.
37

 
29

84
8.

22
 

21
 

13
 

3 
25

 
SC

8 
[5

:4
, 

12
] 

[ 
54

, 
92

] 
-1

14
24

73
.7

7 
14

18
6.

38
 

10
3+

 
- 

29
 

84
+ 

SC
9 

[4
:5

, 
12

[ 
[ 

54
, 

92
] 

-1
52

37
69

.3
4 

-1
46

86
86

.7
7 

15
 

14
 

3 
14

 
SC

10
 

[7
:6

, 
10

] 
[1

04
,1

78
] 

-1
51

68
42

.2
2 

-5
72

7.
09

 
17

 
15

 
4 

28
 

S
C

ll
 

[7
:7

, 
12

] 
[1

19
,2

08
] 

-2
34

96
70

.3
1 

- 
16

10
11

1.
10

 
10

3+
 

91
 

37
 

16
3+

 

>
 

>
 

~Z
 

~J
 

>
 

Le
ge

nd
: 

B
L

P 
= 

Si
ze

 o
f 

or
ig

in
al

 B
L

P[
n 

+ 
m

, 
# 

co
ns

tr
ai

nt
s]

 
L

P 
= 

Si
ze

 o
f 

L
P

(N
O

D
E

) 
re

la
xa

ti
on

 [
# 

va
ri

ab
le

s,
 #

 
co

ns
tr

ai
nt

s]
 

U
B

 0
 =

 I
ni

ti
al

 U
pp

er
 B

ou
nd

 
U

B
 I 

= 
Fi

na
l 

In
cu

m
be

nt
 

N
 =

 N
um

be
r 

of
 n

od
es

 e
xp

lo
re

d 
N

ov
 ~ =

 N
od

e 
at

 w
hi

ch
 o

pt
im

um
 i

s 
fo

un
d 

N
~m

~ 
= 

M
ax

im
um

 n
um

be
r 

of
 a

ct
iv

e 
no

de
s 

pe
r 

st
ag

e 
C

PU
 =

 T
ot

al
 e

xe
cu

ti
on

 t
im

e 
(C

P
U

 s
ec

on
ds

) 
+ 

= 
E

xc
ee

de
d 

pr
es

et
 l

im
it

 

> > ¢J
 

t~
 



T
ab

le
 I

II
. 

R
es

ul
ts

 o
n 

ps
eu

do
-r

an
do

m
ly

 g
en

er
at

ed
 B

L
P(

JC
)'s

 

Pr
op

os
ed

 A
lg

or
it

hm
 

C
E

H
-b

as
ed

 A
lg

or
it

hm
 

Pr
ob

. 
N

am
e 

B
L

P 
L

P 
N

 
N

op
 t 

C
PU

 
L

P 
N

 
N

op
 , 

C
PU

 

> Z ©
 

> ,.q
 

JC
1 

[ 
4,

71
 

[ 
14

,1
19

1 
0 

0 
2.

5 
[ 

14
, 

23
] 

0 
0 

1.
5 

JC
2 

[ 
4,

7]
 

[ 
14

,1
19

] 
19

 
17

 
32

 
[ 

14
, 

23
] 

39
 

37
 

33
 

JC
3 

[ 
4,

7]
 

[ 
14

, I
19

] 
0 

0 
4 

[ 
I4

, 
23

] 
I7

 
17

 
15

 
JC

4 
[ 

6,
 7

] 
[ 

27
,1

73
] 

0 
0 

4.
2 

[ 
27

, 
43

] 
63

+ 
- 

80
+ 

JC
5 

[ 
8,

 7
] 

[ 
44

,2
35

] 
0 

0 
14

 
[ 

44
, 

71
] 

3 
3 

6.
5 

JC
6 

[ 
8,

 7
] 

[ 
44

,2
35

] 
0 

0 
19

 
[ 

44
, 

71
] 

63
+ 

12
0+

 
JC

7 
[ 

8,
 3

] 
[ 

44
,1

45
] 

5 
4 

7 
[ 

44
, 

67
] 

10
3+

 
- 

12
0+

 
JC

8 
[1

0,
 6

] 
[ 

65
,2

77
] 

0 
0 

5 
[ 

65
,1

07
] 

0 
0 

7 
JC

9 
[1

0,
 7

] 
[ 

65
,3

05
] 

0 
0 

7 
[ 

65
,1

07
] 

0 
0 

6 
JC

10
 

[1
0,

 7
] 

[ 
65

,3
05

] 
0 

0 
6 

[ 
65

,1
07

] 
27

 
26

 
39

 
JC

ll
 

[1
2,

 7
1 

[ 
90

,3
83

] 
0 

0 
13

 
[ 

90
, 

15
I]

 
0 

0 
8 

JC
12

 
[1

2,
 7

] 
[ 

90
,3

83
] 

0 
0 

5 
[ 

90
,1

51
] 

0 
0 

5 
JC

I3
 

[1
4,

 7
1 

[1
19

,4
69

] 
0 

0 
6.

3 
[1

19
, 2

O
3]

 
0 

0 
5 

Z E > 7~
 

> Z f3
 

Le
ge

nd
: 

B
L

P 
= 

Si
ze

 o
f 

or
ig

in
al

 B
L

P[
n 

+ 
m

, 
# 

co
ns

tr
ai

nt
s]

 
L

P 
= 

Si
ze

 o
f 

L
P(

N
O

D
E

) 
re

la
xa

ti
on

 [
# 

va
ri

ab
le

s,
 #

 
co

ns
tr

ai
nt

s]
 

N
 =

 N
um

be
r 

of
 n

od
es

 e
xp

lo
re

d 

N
op

 t =
 
N

od
e 

at
 w

hi
ch

 o
pt

im
um

 i
s 

fo
un

d 
C

PU
 =

 T
ot

al
 e

xe
cu

ti
on

 t
im

e 
(C

PU
 s

ec
on

ds
) 

+ 
= 

E
xc

ee
de

d 
pr

es
et

 l
im

it
 



400 H. D. S H E R A L I  A N D  A. A L A M E D D I N E  

As a preliminary, we remark that the construction of the convex envelope of a 
function over a given set and the construction of the closure of the convex hull 
(denoted cl.conv) of its epigraph over this set, are identical processes. This is 
highlighted below. 

THEOREM 4. Let X C_ R n be a nonempty closed, convex set, and let f :  X--* R be 

a continuous function. Define the epigraph o f f  over X as 

S =  {(x, z): z>~f(x), xEX} ,  

Let  f x  denote the convex envelope o f f  over X ,  and consider the epigraph 

S' = {(x, z): z >~fx(X), x E X }  

o f f  x over X .  Then cl.conv(S) = S'. 

Proof. (Horst and Tuy [12, Lemma IV.l] show that S ' =  conv(S) when X is 
compact. We sketch a brief extension for the case of X being unbounded.). Now, 
if (2, Y) ~ S, then £ E X and Y ~>f(£) >~fx(£), and so (2, Z) ~ S'. Hence, S C_ S' 
and since S' is closed and convex, we have cl.conv(S) C_ S'. Conversely, suppose 
that (2, ~ ) E  S'. From Falk [9], we know that 

f x (£ )  = inf{z: (2, z) E conv(S)} (5.1) 

and so [2, fx(£)]  E cl.conv(S). Since £ >~fx(2), it follows that (2, £) E cl.conv(S), 
and this completes the proof. [] 

REMARK 6. Note that the above result shows that the epigraph of the convex 
envelope of f over X defines the closure convex hull of the epigraph of f over X. 
Note also that conv(S) need not necessarily be closed, as for example when 
f (x)  = 1 - e x and X = {x: x/>0}. Also, of related interest, if we replace z >~f(x) 
by z = f (x)  in S, then S' inherits an additional constraint z <~ fX(x ) ,  where f x  is 
the concave envelope of f over X, and then we can again show that cl.conv(S) = 
S r" 

Below, we give two theorems which make use of Theorem 4 to show that a 
particular application of RLT produces the closure of the convex hull of the set 
{(x, y, z): z >1 xy, (x, y) E X } ,  when X is a triangular or quadrilateral D-polytope 
in R 2. As in Sherali and Alameddine [23], a D-polytope is one with no finite, 
positively sloped edge. Over such polytopes, Sherali and Alameddine provide an 
explicit convex envelope characterization for bilinear functions, showing that the 
epigraph of the envelope is polyhedral. The results below demonstrate that a 
suitable RLT process recovers this characterization for the stated cases. 

Henceforth, notationally, RLT(2) shall denote an application of the RLT in 
which the original defining constraints of the polyhedron are multiplied by each 
other pairwise as in (2.2). Also, let us define Z 2 and ZL: to be respectively regions 
defined by the new nonlinear constraints generated by applying RLT(2), and by 
their linearized counterpart following the substitution of type (2.3). 



A N E W  R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  401 

TRIANGULAR D-POLYTOPES 

To begin, consider the triangular D-polytope Z shown in Figure 1. The sYstem of 
defining constraints associated with this polytype are 

[ ly+ 

Note 

(O,s) 

r - p  

(5.2a) 

(5.2b) 

(5.2c) 

that there is no loss of generality in conveniently defining the origin 
relative to the polytope as shown. That is, given a D-polytope, if the origin is 
translated and then RLT(2) is applied to the resulting defining inequalities, the 
representation obtained can be verified to be equivalent to that obtained by 
applying RLT(2) to the original defining inequalities themselves. (See [1] for 
details.) 

For this triangular polytope, we have the following result which states that 
RLT(2),  with projection, constructs the convex envelope of the bilinear function 
f ( x ,  y ) = x y  over the region Z, and hence produces cl.conv {(x, y, z): z >i xy, 

(x, y) @ Z).  

T H E O R E M  5. Consider the triangular D-polyt0pe Z C R 2 shown in Figure 1. 
Using RLT(2), generate the 3 constraints of ZL2 obtained by linearizing the 
constraint products {(5.2a)-(5.2b), (5.2a)-(5.2c), and (5.2b). (5.2c)} using the 
substitution w = xy,  X = x 2, and Y = y2. Define 

S = {(x, y, z): z >i xy, (x, y) ~ Z } ,  

(o,o (r,O) 

Fig. 1. A triangular D-polytope in R z. 

v X 



402 H. D. SHERALI AND A. ALAMEDDINE 

and denote 

Z p= ((x, y, z): z>~ w, (x, y ) ~  Z, (x, y, w, X,  Y) EZL2 } 

to be the projection onto the (x, y, z)-space of the set obtained by applying 
RLT(2).  Then Z p = cl.conv(S). 

Proof. Given any ( x , y , z )  E S ,  by defining w = x y ,  X = x  2, and y = y 2 ,  it 
follows by construction that (x, y, z ) E  Z p. Hence, S C Z p, and since Z p is 
polyhedral, this means that cl.conv(S) C Z p. To complete the proof, we need to 
show that Z p C_ cl.conv(S). By Theorem 4, denoting f (x ,  y) = xy, we have that 

cl.conv(S) = {(x, y, z): z >~fz(X, y), (x, y) E Z} . 

Hence,  given any (x, y, z) E Z p, we need to show that z >~fz(X, y). Noting the 
constraints of Z p, it is sufficient to show that the constraints of ZL2 imply that 
w >~fz(X, y). This is the task undertaken below in order to prove the theorem. 

First of all, note that from Sherali and Alameddine [23], it is readily verified 
that 

[ - ( p q s ) x  - (pqr)y + rspq ] 
f z (x '  Y) = (rs - sp - rq) " 

Now, the constraints of ZL2 are given as follows. 

- [ ~ s p q l x - [  l l Y ~ - [ r s +  ~sp-Sp-rq]x- I2] '  

p - r  rs+ - _ I 1 ] X + [ ~ s q  ] y > _ f 2 ] x _ [  rq S p ] y +  
rsq 

+ 

(5.3) 

rs + sp - rq ] 
rs2p w + l  

(5.4a) 

rs + r__q_- SP ] w + l 
rsZq 

(5.4b) 

(5.4c) 

Denote  the above set of inequalities (5.4) as Po~ ~> Q/3 + b, where o~ = (X, y)t, 
and /3 = (x, y, w) ~. Then, by linear programming duality, there exists an c~ that 
satisfies Pc~ ~> Q/3 + b for a given/3 if and only if 

(Q/3+b)~<~O f o r a n y ~ r E A = ( ~ - :  P t w = 0 ,  e t l r = l ,  w~>0}. (5.5) 

A is explicitly given below. 

s - q  

-- [ ~2 ] 37"i -- [ FFTqP ] 7T2 -~- [ FFTqP ] ~'3 = 0 (5.6b, 

The set 



A N E W  R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  403 

zr 1 + "rr 2 + 73 = l (5.6c) 

~-1, zr2, % ~>0. (5.6d) 

Note  that by (5.5), 

=- (x ,  y ,  w)  E ZL2 if and only if (77)t(Q/3 + b) ~< 0 VT? E vert(A),  
(5.7) 

where vert(A) denotes the vertices of A. Furthermore,  note from (5.4) that 

( Q ~  + b ) ' ~  = ClX -Jr c2y  ~- c l 2 w  ~- (7~" 1 ~- 3"r 2 - 373) (5.8a) 

where c I , c 2 , and ci2 are given as follows: 

rs + - 2 rq]  [r rsp ~-sp- rq ] ~'3 (5.8b) 

1 2 ]  [ r s + r q - s P l ~ r ~ + [ r s + r q - s p  ] 
c 2 = - ~r~ - rsq rsq I73 (5.8c) 

r sq 
(5.Sd) 

Now, it can be readily verified that A has a single vertex ~r given as the solution to 
the system (5.6a)-(5.6c).  The solution to this subsystem is given below in 
closed-form 

s(r  - p )  >10 ~2 = r(s - q)  >10 
(q = (3rs  - sp - rq) ' (3rs - sp - rq) ' 

rs 

~r3 = (3rs - sp - rq) >~ 0 (5.9) 

where the nonnegativity follows by noting that rs is an upper bound on the values 
of sp and rq. Letting M = 3rs - sp - rq be a scaling parameter,  and using (5.9) in 

(5.8), we have 

( - rs + sp + rq ) 
m c  I = 

r 

M c  = ( - r s  + sp + rq ) 
- S 

Mc12 = _ [ (rs -~spqSp - rq) 2 1" 

(5.10a) 

(5.10b) 

(5.10c) 

Fur thermore ,  from (5.9), we have, 

M(#~ + ~r 2 - ~r3) = rs - sp - rq . (5.11) 



404 I4. D. S H E R A L I  A N D  A. A L A M E D D I N E  

Hence, putting (5.7) and (5.8a) together, we have that 

(x ,  y ,  w)  E ZL2 if and only if M [ c l x  + Czy + c12 w ~- (7~" 1 -[- 7~" 2 - -  q~'3)] ~ 0 .  

Noting that c~z < 0, and writing the foregoing condition as 

w > ~ -  Cl x - y -  
\ C12 / C12 

we see from (5.3), (5.10), and (5.11) that this is precisely w >~fz(x ,  y ) .  This 
completes the proof. [] 

QUADRILATERAL D-POLYTOPES 

Next, consider the quadrilateral D-polytope Z shown in Figure 2. The system of 
defining constraints associated with this polytope Z is 

- [ 1 I x - f l ] y +  11>0 (5.12a) 

[ ~ p q ] x +  [ 1 ] y -  1~>0 (5.12b) 

[ , , ]  [ _q_ _u ]x + 1/>0 (5.12c) 
L tq -- p u  J tq p u  Y -- 

[ 1 ] x +  [ ~ u t ] y - 1 ~ 0 .  (5.12d) 

Similar to Theorem 5, for the quadrilateral polytope Z shown in Figure 2, we 

y 

(O,s) 

(o,o (r,O) 

Fig. 2. A quadrilateral D-polytope in R 2, 

v X 



A N E W  R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  405 

have the following result. (This result also holds for quadrilateral D-polytopes 
having other shapes than that in Figure 2, including rectangles.) 

T H E O R E M  6. Consider the quadrilateral D-polytope Z C R 2 shown in Figure 2. 
Using RLT(2) ,  generate the 6 constraints of  Zc2 by linearizing the constraint 
products {(3.4a). (3.4b), (3.4a).(3.4c), (3.4a). (3.4d), (3.4b). (3.4c), (3.4b)" 
(3.4d) and (3.4c). (3.4d)}, by using the substitution w = xy, X =  x 2, Y =  y2. 
Define S = { ( x , y , z ) :  z>Ixy,  (x, y) E Z ) ,  and denote Z p={(x ,  y ,z):  z/>w,  
(x, y) ~ Z, (x, y, w, X, Y) E Zc2 } to be the projection onto the (x, y, z)-space of  
the set obtained by applying RLT(2).  Then Z p = cl.conv(S). 

Proof. Following the proof of Theorem 5, we identically have that cl.conv(S) C_ 
Z p, and in order to show that Z p C_cl.conv(S), we need to show that the 
constraints of ZL2 imply that w >~ fz(X, y). 

Toward this end, let Po~ >i Qfl + b denote the inequalities of ZLZ generated by 
the pairwise products given in the theorem, in that order, where a = (X, Y f  and 
fl = (x, y, w) t. Then the projection Z p of this constraint set onto the space of the 
variables fl = (x, y, w) t is given by 

Z p ~ { ( x , y , w ) : ( x , y ) E Z ,  (x ,y ,w)Q'Tr k+b'zr ~<~0, V k = I , . . . , K ) ,  

where ~r ~, k = 1 , . . . ,  K, are the vertices of the set A =  {~-: P%-=0,  etTr = 1, 
~-/> 0}, and where e' = ( 1 , . . . ,  1). Note that the vector ~r equals (~-1 . . . . .  %)', 
and that A has three equality constraints that can be verified to be linearly 
independent. Hence, extreme points of A have three basic variables. Now, 
consider two cases. 

CASE 1. Suppose that the ratio 

tu(sp + rq - rs) ] 
pq(st + ru rs) ] > 1. (5.13) 

Consider the following two choices of bases for A, where the three designated 
nonzero components of each solution 7r q, q = 1, 2, are considered as basic. 

7rl = (~'1,7~'2,0, 0, ~'5,0) r (5.14a) 

~-~ = (0, "#2,0, 0, ~'5, ~'6) t. (5.14b) 

It is shown in Alameddine [1] Appendix A, through tedious algebraic manipula- 
tions, that these solutions are indeed vertices of A, and that the two constraints 
(x, y, w)Q'zr~+b'~k<~O, k = l ,  2, define the convex envelope o f f ( x ,  y ) = x y  
over Z. In fact, these constraints represent the convex envelopes of f over the 
triangular regions ABD and BCD, respectively, shown in Figure 3(a), which are 
described by the following explicitly stated supports: 



406 H. D. S H E R A L I  A N D  A.  A L A M E D D I N E  

A = (0,s A = (O,s 

D = (r,O) (o.0) (o,o) 
~---x 

D = (r,O) 

(3a) (3b) 

Fig. 3. Triangular  decomposit ion for Theorem 6. 

where 

E (spq)x - (rpq)y + rspq ] 
w >! -~--- rq - sp) J 

w >I [ u ( t - / 3 ~ ) ] x  + [ p q ( t - r ) +  t u ( r - p ) ]  [ r u ( t - / 3 ~ ) ]  
( t~-r )  L q ~ S - ~ ) ~ - u ~ - - ~  J Y - L  (t r) J '  

, [ p q ( t - r _ ) + t u ( r - p ) ]  
l~4 = k q(t - r) + u(r - p) " 

Hence ,  in Case 1, the constraints of ZL2 imply that w >~fz(x,'y). 

(5.15a) 

CASE 2. On the other hand, suppose that the ratio in (5.13) satisfies 

[ tu(sp + rq - rs) ] 
O<~Lp--~t~ ru rs) ~<1. (5.16) 

Consider  the following two choices of bases for A, where the three designated 
nonzero components  of each solution 7r q, q = 1, 2 are considered as basic. 

7r 3 = (0, 7r 2 , 7r 3 , 0, ~ '5,0) '  (5.17a) 

7r 4 = (0, "~'a, 0, ~r 4 , ~5, O f .  (5.17b) 

Again,  it can be shown that these are indeed vertices of A, and that the two 
constraints (x, y, w)Q'cr*+ b ' c r ~ O ,  k = l ,  2, define the convex envelope of 
f (x ,  y) = xy over Z. In fact, these constraints represent  the convex envelopes o f f  
over  the triangular regions A C D  and ABC,  respectively, shown in Figure 3(b), 
which are described by the following explicitly stated supports: 

w ~ [ - ( s tu)x  - (rtu)y + rstu ] 
(rs ~u ~ sO (5.18a) 



A N E W  R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  407 

W ~  
q[t(s - q) + p(u - s)] + t(u - q)(s - q) ]x 

V-- q-) ; pC.--4 J 

+ l t(s ---q-)-+--p--~-pt(u-q) s)]Y-[t(s ---q)~p~-s)Spt(u-q) ]. (5.18b) 

Hence, we again have in Case 2, that the constraints of Z/~ 2 imply that 
w ~ f z ( X ,  y), and this completes the proof. 

From Figures (3a) and (3b), note that the diagonals BD and AC each partition 
the area of quadrilateral ABCD into two triangular regions. Theorem 6 gives the 
condition under which either diagonal is used in the triangular partitioning 
process, and states that it is dependent on the ratio: 

t u ( s p + r q - r s ) ]  
p-- t+ru 

Geometrically, this ratio represents the relative distances of the points (p, q) and 
(t, u) from the longest side AD. 

We remark here that the concave envelope of the function xy over Z is not 
available via the RLT scheme in the above cases. This follows because the 
concave envelope is given by the negative of the convex envelope of - x y  over Z. 
Substituting x' = - x ,  this reduces to determining the convex envelope of x 'y  over 
a corresponding set Z'. However, Z'  need not be a D-polytope, and in fact, the 
convex envelope of x 'y  over Z '  need not be polyhedral. Nonetheless, the 
foregoing analysis gives a theoretical motivation for using RLT. We also remark 
here, that for the bilinear function xy defined over a pentagonal D-polytope, 
RLT(2) fails to produce the convex hull representation. For example, for the 

A= (0.1,3) 

S = (0.25,2) ~NN. ~ 

w 

(o,o) 
Fig. 4. Pentagon D-polytope in R 2. 

(6,0) 



408 H . D .  S H E R A L I  A N D  A. A L A M E D D I N E  

pentagon shown in Figure 4, one can verify that the convex hull representation in 
the spirit of Theorems 5 and 6 is not produced by RLT(2), while it is produced by 
RLT(3), which considers products of constraints taken three at a time as well. 
This therefore motivates a possible consideration for higher order products. 

6. Summary and Extensions 

To summarize, we have presented a new Reformulation-Linearization Technique 
(RLT) to generate tight linear programming relaxations for (general) jointly 
constrained bilinear programming problems. This RLT process has been shown to 
yield convex hull representations for triangular and quadrilateral D-polytopes in 
R 2. The linear programming bounding problems, when imbedded in a branch- 
and-bound algorithm, yield a computationally effective algorithm that is theoreti- 
cally convergent under various flexible and useful partitioning schemes. Empiri- 
cally, the algorithm solves most problems at the initial node itself unless the 
problem has a nonextremal boundary point solution, which then necessitates the 
enumeration of a few nodes. 

The main computational burden of the algorithm lies in the solution of the 
lower bounding problems, and this can be alleviated by using more efficient (e.g., 
interior point or Lagrangian duality-based) linear programming solvers. Alterna- 
tively, we can reduce the size of the bounding linear programs by dispensing with 
constraints that might not contribute significantly to the tightness of these bounds, 
while unduly burdening the algorithm. We highlight our preliminary attempt at 
such a "constraint filtering strategy" below. 

R E M A R K  7. Constraint Filtering Strategy. In the first step of this strategy, we 
solve the CEH-based problem LP'(I~), to obtain a solution (£,)7, ~).  This 
solution is augmented to produce ~ = (2,)7, ~, J~, I?) through the substitution 
f(ij = £fij, VZ, j, and l?ij = )TiY-j, Vi, j. The constraints of LP(f~) are then gener- 
ated in the usual manner, and for each such inequality constraint ~iz/>/3z, say, 
we compute the (signed) Euclidean distance ( j-t i)/lldll of ~ from the 
corresponding hyperplane. If this distance exceeds a specified tolerance ~- > 0, the 
constraint is deleted. The resulting reduced problem is then used to compute a 
lower bound. Computationally, we found that a suitable value of ~- can indeed 
reduce storage and effort, but such a value is highly problem dependent and 
therefore, an effective implementation of this strategy requires further investi- 
gation. 

We are also pursuing several other avenues for future research. These include 
the design of a more effective RLT scheme, the use of triangular and quadrilater- 
al D-polytope partitions of rectangles, the computational testing of transforming 
the bilinear term x'Gy to the form xtz through the substitution z = Gy, the design 
of more computationally effective branching strategies as suggested by AI- 
Khayyal and Falk [2] with respect to their heuristic acceleration technique, and 



A N E W  R E F O R M U L A T I O N - L I N E A R I Z A T I O N  T E C H N I Q U E  409 

the design of an effective constraint filtering strategy as in Remark 7. This work 
can also be extended to solve indefinite quadratic programs, as well as bilinearly 
constrained bilinear programming problems. In particular, Sherali and Tuncbilek 
[25] discuss an extension to solve general polynomially constrained polynomial 
programming problems. 

Acknowledgements 

This material is based upon work supported by the National Science Foundation 
under Grant No. ECS-8807090 and the Air Force Office of Scientific Research 
under Grant No. 2304/B1. The government has certain rights in this material. We 
also thank an anonymous referee for detailed comments that helped improve the 
readability of this paper. 

References 

1. Alameddine, A. R. (1990), A New Reformulation-Linearization Technique for the Bilinear 
Programming and Related Problems with Applications to Risk Management, Ph.D. Dissertation, 
Department of Industrial and Systems Engineering, Blacksburg, VA 24061. 

2. AI-Khayyal, F. A. and J. E. Falk (AF) (1983), Jointly Constrained Biconvex Programming, 
Mathematics of Operations Research 8, 273-286. 

3. Al-Khayyal, F. A. (1983), Jointly Constrained Bilinear Programming and Related Problems, 
Report, Industrial and Systems Engineering No. J-83-3~ Georgia Institute of Technology, Atlanta, 
GA. 

4. Al-Khayyal, F. A. (1986), Linear Quadratic, and Bilinear Programming Approaches to the Linear 
Complementarity Problem, European Journal of Operational Research 24, 216-227. 

5. AI-Khayyal, F. A. (1990a), Jointly Constrained Bilinear Programs: An Overview, Journal of 
Computers and Mathematics with Applications 19(11), 53-62. 

6. A1-Khayyal, F. A. (1990b), Generalized Bilinear Programming, Part I: Models, Applications and 
Linear Programming Relaxation, European Journal of  Operational Research, forthcoming. 

7. AI-Khayyal, F. A. and C. Larsen (AL) (1990), Global Minimization of a Quadratic Function 
Subject to a Bounded Mixed Integer Constraint Set, Annals of Operations Research 25, 169-180. 

8. Czochralska, I. (1982), Bilinear Programming, Applictiones Mathematicae XVIII 3, 495-514. 
9. Falk, J. E. (1969), Lagrange Multipliers and Nonconvex Programs, SIAM Journal on Control 

7(4), 534-545. 
10. Horst, R. (1976), An Algorithm for Nonconvex Programming Problems, Mathematical Program- 

ming 10, 312-321. 
11. Horst, R. (1986), A General Class of Branch and Bound Methods in Global Optimization with 

Some New Approaches for Concave Minimization, Journal of Optimization Theory and Applica- 
tions 51(2), 271-291. 

12. Horst, R. and H. Tuy (1990), Global Optim&ation: Deterministic Approaches, Springer-Verlag, 
Berlin. 

13. Kalantari, B. and J. B. Rosen (I987), An Algorithm for Global Minimization of Linearly 
Constrained Concave Quadratic Functions, Mathematics of Operations Research, 12, 544-561. 

14. Konno, H. (1971) Bilinear Programming, Part I: An Algorithm for Solving Bilinear Programs, 
Technical Report No. 71-9, Operations Research House, Stanford University (Stanford, CA). 

15. Konno, H. (1971), Bilinear Programming, Part II: Applications of Bilinear Programming, 
Technical Report No. 71-10, Operations Research House, Stanford University (Stanford, CA). 

16. Konno, H. (1976a), A Cutting Plane Algorithm for Solving Bilinear Programs, Mathematical 
Programming 11, 14-27. 



410 H. D. S H E R A L I  A N D  A. A L A M E D D I N E  

17. Konno, H. (1976b), Maximization of a Convex Quadratic Function under Linear Constraints, 
Mathematical Programming 11, 117-127. 

18. Konno, H. and T. Kuno (KK) (1989), Generalized Linear Multiplicative and Fractional Program- 
ming, forthcoming. 

19. Muu, L. D. and W. Oettli (1990), Combined Branch-and-Bound and Cutting Plane Methods for 
Solving a Class of Nonlinear Programming Problems, forthcoming. 

20. Ritter, K. (1966) A Method for Solving Maximum Problems with a Nonconvex Quadratic 
Objective Function, Wahrscheinlichkeitstheorie 4, 340-351. 

21. Sherali, H. D. and W. E Adams (1990a), A Hierarchy of Relaxations between the Continuous 
and Convex Hull Representations for Zero-One Programming Problems, SIAM Journal on 
Discrete Mathematics 3(3), 411-430. 

22. Sherali, H. D. and W. E Adams (1990b), A Hierarchy of Relaxations and Convex Hull 
Characterizations for Zero-One Mixed Integer Programming Problems, forthcoming. 

23. Sherali, H. D. and A. R. Alameddine (1990), An Explicit Characterization of the Convex 
Envelope of a Bivariate Bilinear Function over Special Polytopes, in Pardalos P. M. and J. B. 
Rosen (eds.), Annals of OR: Computational Methods in Global Optimization 25, 197-210. 

24. Sherali, H. D. and C. M. 8hetty (SS) (1980), A Finitely Convergent Algorithm for Bilinear 
Progamming Problems Using Polar Cuts and Disjunctive Face Cuts, Mathematical Programming 
19, 14-31. 

25. Sherali, H. D. and C. H. Tuncbilek (1991), A Global Optimization Algorithm for Polynomial 
Programming Problems Using a Reformulation-Linearization Technique, in Floudas, C. A. and R 
M. Pardalos (eds.), Recent Advances in Global Optimization, Princeton University Press, Prince- 
ton, NJ, forthcoming. (Also, Journal of Global Optimization 2, 101-112 (1992).) 

26. Thieu, T. V. (1988), A Note on the Solution of Bilinear Problems by Reduction to Concave 
Minimization, Mathematical Programming 41, 249-260. 

27. Tuy, H. (1964), Concave Programming under Linear Constraints, Soviet Math. Doklady 5, 
1437-1440. 

28. Vaish, H. and C. M. Shetty (1976), The Bilinear Programming Problem, Naval Research Logistics 
Quarterly 23, 303-309. 

29. Vaish, H. and C. M. Shetty (1977), A Cutting Plane Algorithm, for the Bilinear Programming 
Problem, Naval Research Logistics Quarterly 24, 83-94. 

30. Yajima, Y. and H. Konno (1989), Efficient Algorithms for Solving Rank Two and Rank Three 
Bilinear Programs, forthcoming. 

31. Zwart, P. B. (ZW) (1973), Nonlinear Programming: Counterexamples to Two Global Optimiza- 
tion Algorithms, Operations Research 21, 1260-1266. 


